Power MOSFET 30 V, 58.5 A, Single N–Channel, SO–8 FL

Features

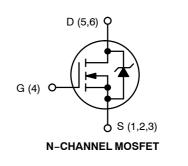
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Thermally Enhanced SO-8 Package
- These are Pb–Free Device

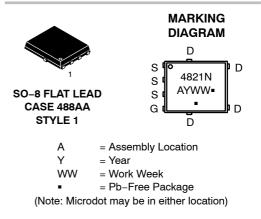
Applications

- Refer to Application Note AND8195/D
- CPU Power Delivery
- DC–DC Converters
- High Side Switching

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

Para	$\begin{array}{c} T_A = 25\\ T_A = 85\\ T_A = 85\\ T_A = 25\\ T_C = 25\\$		Symbol	Value	Unit
Drain-to-Source Vo	ltage		V _{DSS}	30	V
Gate-to-Source Vol	tage		V _{GS}	±16	V
Continuous Drain		T _A = 25°C	Ι _D	13.8	Α
Current R _{θJA} (Note 1)		T _A = 85°C		10	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.14	W
Continuous Drain		T _A = 25°C	I _D	22.4	А
Current R _{θJA} ≤ 10 sec		T _A = 85°C		16.1	
$\begin{array}{l} \text{Power Dissipation} \\ R_{\theta JA,}t \leq 10 \; \text{sec} \end{array}$		T _A = 25°C	PD	5.61	W
Continuous Drain	State	T _A = 25°C	I _D	8.8	А
Current R _{θJA} (Note 2)		T _A = 85°C		6.4	
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	6.4 0.87 58.5	W
Continuous Drain Current $R_{\theta JC}$	-	$T_{\rm C} = 25^{\circ}{\rm C}$	Ι _D	58.5	A
(Note 1)		T _C = 85°C		42.3	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	38.5	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	117	A
Current limited by pa	ickage	T _A = 25°C	I _{Dmaxpkg}	$\begin{array}{c} 30 \\ \pm 16 \\ 13.8 \\ 10 \\ 2.14 \\ 22.4 \\ 16.1 \\ 5.61 \\ 8.8 \\ 6.4 \\ 0.87 \\ 58.5 \\ 42.3 \\ 38.5 \\ \end{array}$	Α
Operating Junction a Temperature	nd Storage	9	T _J , T _{STG}		°C
Source Current (Boo	ly Diode)		۱ _S	38.5	Α
Drain to Source dV/c	lt		dV/dt	6	V/ns
Single Pulse Drain-t Energy ($V_{DD} = 50 V$, $I_L = 24 A_{pk}$, $L = 0.3 T$	V _{GS} = 10 \	Ι,	EAS	86	mJ
Lead Temperature for (1/8" from case for 1		Purposes	ΤL	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	6.95 mΩ @ 10 V	
50 V	10.8 mΩ @ 4.5 V	58.5 A

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4821NT1G	SO-8FL (Pb-Free)	1500 / Tape & Reel
NTMFS4821NT3G	SO-8FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ ext{ heta}JC}$	3.25	
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	58.3	°C/W
Junction-to-Ambient - Steady State (Note 2)	R_{\thetaJA}	144.1	-C/W
Junction-to-Ambient – t \leq 10 sec	$R_{ hetaJA}$	22.3	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	V_{GS} = 0 V, I_{D} = 250 μ A				V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				25		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V,$	T _J = 25 °C			1	
		$V_{DS} = 24 V$	T _J = 125°C			10	μA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±16 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= 250 μA	1.45	1.8	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J						mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$R_{DS(on)}$ $V_{GS} = 10 V to$ $I_D = 30 A$		5.3	6.95		
		11.5 V	I _D = 15 A		5.2		
		V _{GS} = 4.5 V	I _D = 30 A		8.6	10.8	mΩ
			I _D = 15 A		8.4		
Forward Transconductance	9FS	V _{DS} = 1.5 V, I _I	_D = 30 A		54		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				1400		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	z, V _{DS} = 12 V		282		pF
Reverse Transfer Capacitance	C _{RSS}				136		
Total Gate Charge	Q _{G(TOT)}				10.7	16	
Threshold Gate Charge	Q _{G(TH)}				1.4		20

in concia claic chaige	~G(IH)			nC
Gate-to-Source Charge	Q _{GS}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A	4.1	nc
Gate-to-Drain Charge	Q _{GD}		3.8	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 11.5 V, V_{DS} = 15 V, I _D = 30 A	25	nC

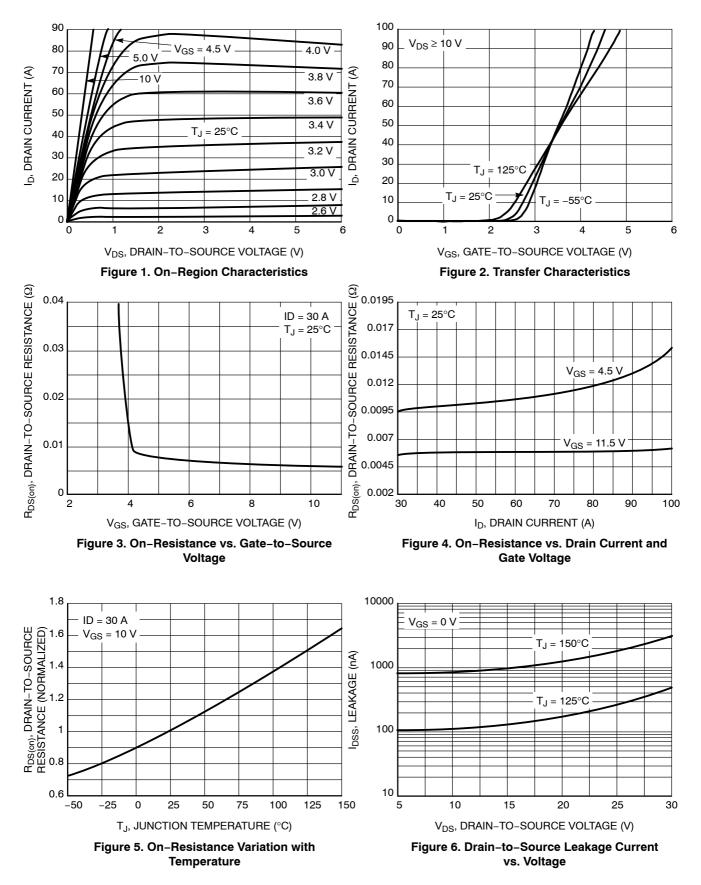
SWITCHING CHARACTERISTICS (Note 4)

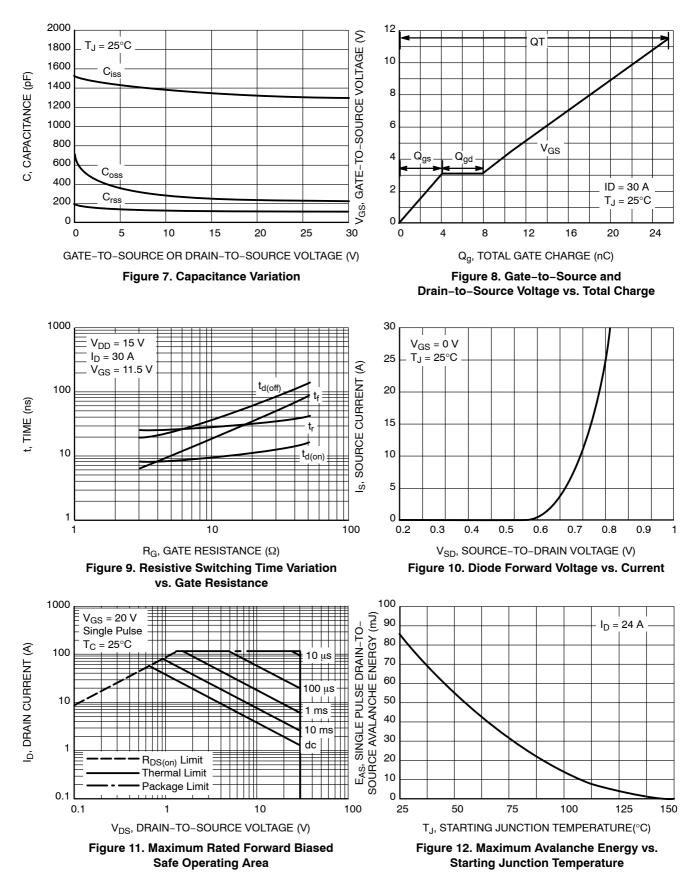
Turn-On Delay Time	t _{d(ON)}		13.3	
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 15 A,	38	20
Turn-Off Delay Time	t _{d(OFF)}	R_{G} = 3.0 Ω	16.6	ns
Fall Time	t _f		3.8	

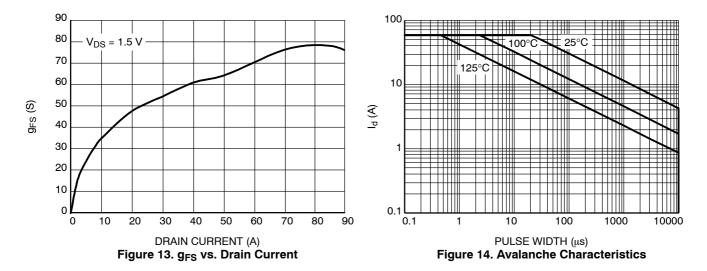
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 4)						
Turn-On Delay Time	t _{d(ON)}				8.2		
Rise Time	tr	V _{GS} = 11.5 V, V _I	_{0S} = 15 V,		20		- ns
Turn-Off Delay Time	t _{d(OFF)}	V _{GS} = 11.5 V, V _I I _D = 15 A, R _G	= 3.0 Ω		23		
Fall Time	t _f				3.1		
DRAIN-SOURCE DIODE CHARACTE	ERISTICS						
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V, \\ I_{S} = 30 A \\ T_{J} = 125^{\circ}C \\ T_{J} = 125^{\circ}C$		0.85	1.0		
				0.74		V	
Reverse Recovery Time	t _{RR}		•		11		
Charge Time	t _a	V _{GS} = 0 V, dI _S /dt =	= 100 A/μs,		7.5		ns
Discharge Time	t _b	I _S = 30 /	4		3.5		
Reverse Recovery Charge	Q _{RR}				2.0		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	T _A = 25°C			1.3		nH
Drain Inductance	L _D				0.005		
Gate Inductance	L _G				1.84		
				<u> </u>	1		

0.5

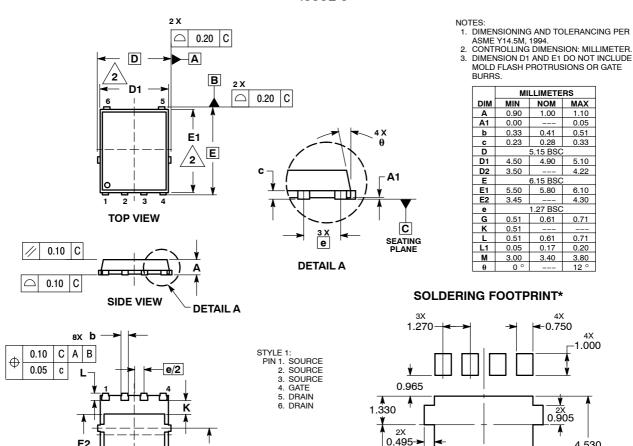

1.1

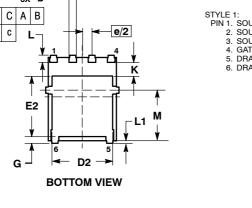

2.0


Ω

Gate Resistance

 R_G





PACKAGE DIMENSIONS

DFN6 5x6, 1.27P (SO8 FL) CASE 488AA-01 **ISSUE C**

4X 1.000 0.495-> 4.530 3.200 0.475 2X → 1.530 4.560

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All or operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications Buyer purchase or use SCILLC products for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative